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What’s in a loop?
Stephan M Feller* and Marc Lewitzky
Abstract

DNAs and proteins are major classes of biomolecules that differ in many aspects. However, a considerable number
of their members also share a common architectural feature that enables the assembly of multi-protein complexes
and thereby permits the effective processing of signals: loop structures of substantial sizes. Here we briefly review a
few representative examples and suggest a functional classification of different types of loop structures. In proteins,
these loops occur in protein regions classified as intrinsically disordered. Studying such loops, their binders and
their interactions with other loops should reveal much about cellular information computation and signaling
network architectures. It is also expected to provide critical information for synthetic biologists and bioengineers.
DNAs are different from proteins in many ways. Our
genomic DNA molecules are vast, even when compared
to the largest proteins we know. DNA is essentially com-
posed of 4 building blocks that are at best modified with
a few extra side bits here and there. In proteins we find
at least 20 different amino acids and more than one
hundred types of posttranslational modifications.
The genomic DNAs of eukaryotes live mostly in one

confined cell compartment, while proteins lurk in virtu-
ally every corner of the cell and many of them whiz
about.
DNA seems to be usually just able to coil into spirals

that coil into bigger spirals (30 nm fibre) that coil into
even bigger spirals (200 nm fibre/chromosome), while
proteins can take up a plethora of diverse and highly
complex shapes, or, for intrinsically disordered proteins,
no apparent shapes at all.
Most DNA seems to have the capacity to live forever,

while probably all proteins have a quite limited lifespan.
Despite all of these differences, DNA and proteins

have of course a number of things in common. Both are
extremely important classes of biomolecules and both
are, for example, able to store information. In addition,
they share an architectural feature related to complex in-
formation processing: substantially sized loop structures.
In genomic DNAs, these loops have already been stud-

ied for decades and in some detail, but exciting new
results are still constantly emerging [1-3].
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To reveal its information, DNA must be untangled
and often distant regions within one molecule or be-
tween fellow DNA molecules have to interact. These
communicating loops enable promoters, enhancers and
other regulatory elements, which are sometimes mega-
bases apart, to come together in space and time in a
highly dynamic process which is not entirely understood
[4,5]. An early example for this type of long-distance
interaction was the finding that the beta-globin enhan-
cer, which is located far upstream of the globin genes,
comes into close proximity when the genes are actively
transcribed [6]. New methodologies, for example the Hi-C
method [7-9], are now addressing DNA looping at the
whole genome level. Here, protein-DNA complexes at
interacting loci are preserved by fixation with formalde-
hyde, affinity purified and subsequently analyzed by high-
throughput sequencing [9].
Apart from their crucial participation in information

transfer, DNA loops also play an important role in DNA
maintenance. Loop structures at the telomeric ends of
chromosomes safeguard and prevent these ends from
being treated as DNA double-strand breaks [10]. When
the telomeric ends become critically short, loop struc-
tures are absent which eventually will result in cell cycle
arrest [11].
It goes without saying that loops also play many crit-

ical roles in RNA molecules, although they are, to our
knowledge, usually not as directly involved in signal pro-
cessing by protein complex cross-talk.
Proteins use loops too, and in a gamut of contexts.

Loop regions occur in inter-domain segments of other-
wise well-folded proteins, where they can serve multiple
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functions: short loops sometimes feature as mere linkers
or may also provide the required flexibility for the move-
ment of the neighboring protein domains (linker loops
[L-L]). Other loops serve as linkers regions, but also
allow proteins to interact intramolecularly when under-
going shape changes (intramolecular docking loops
[IMD-L]). The linker regions between the SH2s and
catalytic domains of Src and Abl kinases [12,13] (and
references therein) and the linker region around tyrosine
221, between the SH3 domains of the human c-Crk II
protein, are well-studied examples proven to be essential
for intramolecular protein binding events [14,15] (and
Figure 1). Then there exists a vast number of loop
regions which upon modification by specific enzymes
serve as docking sites for a single protein interaction
partner, or a couple of them (small docking loops
[SD-L]). Such loops are found, for example, between the
membrane-spanning helices of receptor and channel
proteins that reside in cellular membranes. Short loops
localized within a well-folded protein domain can also
work together to form binding pockets for proteins and
a range of other biomolecules (binding pocket loops
[BP-L]).
In extracellular proteins and polypeptides, functionally

vital loop structures, for example generated by disulfide
bonds, are found in a vast range of contexts. Classical
examples are the loops of the atrial natriuretic peptide
hormone family members [32] (and Figure 1). These
loops could be designated ‘activity conferring loops’
[AC-L].
Finally, the human proteome encompasses many pro-

teins suspected to contain much larger loops with nu-
merous putative sites for protein docking [33]. Such
larger loops are thought to assemble crucial parts of mo-
lecular ‘nanocomputers’, which compute signaling input
from environment-sensing transmembrane receptors
[19,20,33] (and Figure 1). These could be designated as
‘signal computation loops’ [SC-L]). This type of loops is
quite reminiscent of their DNA counterparts, which are,
amongst other things, involved in transcriptional regula-
tion. In proteins, they appear preferentially in the ‘an-
archic fraction’ of proteomes; in humans approximately
one third of the proteome is thought to consist of par-
tially or mostly ‘unstructured’ i.e. ‘intrinsically disor-
dered’ proteins.
These fickle and certainly understudied characters lack

in many sections of their protein chains secondary and
tertiary structure elements that would be detectable with
the most commonly used current structure prediction
programs. Some of those proteins display disordered
regions of several to many hundred amino acids, which
made it for a long time difficult to understand the mo-
lecular mechanisms of how they actually conduct their
business in cells. A long and unrestrained amino acid
chain that is able to move about freely can in principle
adopt a virtually infinite number of conformations. So,
presumably, none of these large molecules would ever
take on an identical shape. Yet they do perform their
usually complex duties in cells swiftly and effectively.
Protein chain loops are, of course, a feature that can

make this possible [19]. Looping will substantially re-
strict the conformational space that protein chains can
sample, but at the same time leave enough flexibility to
allow multiple other proteins to bind and covalently or
noncovalently modify the intrinsically disordered protein
chains. Importantly, protein loop structures of sufficient
size should easily be able to simultaneously interact with
several other protein and/or DNA loops, thereby enab-
ling diverse and complex signal computation operations
through the cross-talk of two or more signaling path-
ways in a simple yet elegant manner.
At present, we still know relatively little details about

large protein loops involved in signal processing. Neverthe-
less, it would seem to be a fair guess that the unstructured
parts of many proteins ‘live’ in a zone of intermediate
flexibility between the hypothetical structural poles of
‘complete chaos’ on one end and substantial rigidity
imposed through extensive constraints by a highly folded
protein on the other end.
That is not to say that all disordered proteins must use

loops. Some proteins and in particular those that lack
any well-folded regions and are relatively short may rely
entirely on a more or less linear protein chain for their
biological actions and, for example, adopt local structure
only upon interaction with their binding partner(s). The
binding of p27Kip1 to the Cdk2/cyclinB complex is a
well-known point in case [34].
Nevertheless, higher order signal processing events can

be expected to rely in many cases on two or more loops
structures that enable the coordinated assembly of sub-
complexes, which can then communicate to decide cell
fates and orchestrate and direct the subsequently required
cell actions. In order to generate and organize these loop
structures in intrinsically disordered protein chains an ‘or-
ganizing center’ is probably mandatory. In many proteins,
for example those of the Gab, Irs/Dok, Frs and p130Cas/
BCAR1 families, well-folded N-terminal domains might
serve as anchor points [33,35,36]. In principle, such an or-
ganizing center could also be more C-terminally located,
or there could be more than one such center within a sin-
gle protein chain.
So what about large disordered proteins without a

recognizable folded region? It is conceivable that these
characters could use other biomolecules, most com-
monly other proteins, as helpers to ‘get into shape’. Sta-
bilizing loops that are built around a folded domain
could in some cases also be supported by ‘loop-
stabilizing intermolecular interactions in the form of
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Figure 1 (See legend on next page.)
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Figure 1 Selected examples for different functional types of loops in large biomolecules. A. Atrial natriuretic peptide hormones contain
vital ‘activity conferring’ loops (green) generated in each case by a single disulfide bond (red). Shown here is the solution conformation and
cartoon representation of one ANP variant. Solution conformation generated from PDB database entry 1ANP [16] using Chimera [17]. Cartoon
representation based on similar representation in [18]. B. The ‘intramolecular docking’ loop (green) in the c-Crk II protein regulates the overall
conformation of its SH2 (red), SH3N (dark blue) and SH3C (light blue) domains by an inducible intramolecular interaction between the SH2
domain and a phosphorylated tyrosine residue (yellow) in the loop region. Structural representation generated from PDB entry 2DVJ (aa 1-228;
SH2, SH3N and loop) and PDB entry 2EYZ (aa 229-304; loop and SH3C) [15]. C. Gab1 contains an N-terminal PH domain (grey shaded area)
followed by a largely unstructured region (green) with numerous sites for potential intra- and intermolecular interactions (yellow: tyrosine-
phosphorylation sites, red: serine-phosphorylation site, orange and purple: secondary structure elements). This ‘signal computation’ loop permits
the assembly of and signaling via context-specific complexes [19,20]. The poly-proline type II helix (PP II) and the 310 helix (310) in Gab1 and its
close relative Gab2 can interact with the Grb2 adapter protein [21,22]. Cortactin was also reported to interact with these regions [23]. pTyr407 was
mapped as binding site for NCK [24]. pSer 552 allows intramolecular interaction of the loop region with the PH domain and regulates Gab1
localization [25]. Interaction regions for PAK4 kinase [26], CRK-family proteins [27,28], PI3 kinase (PIK3R1/2; [29]) and the phosphatase SHP2
(PTPN11; [30]) have been described. WASL (N-WASP) may interact directly with the PH domain (Richard Vaillancourt, Morag Park et al.; personal
communication). Elements associated with specific cellular functions like cell motility, survival or proliferation are often found co-localized in
defined regions of the signaling loop. Y83 and T387 are two residues mutated in breast cancer. The Y83C mutation could interfere with PI(3,4,5)P3
binding of the PH domain [25], while a T387N mutation abolishes a threonine residue phosphorylated after EGFR or c-Met stimulation [31].
Structural representation of PH domain generated from PDB entry 2X18. D. A ‘signal computation’ loop (green) in a DNA molecule controls
transcriptional activity by bringing locus control region (LCR) and promoter region together in the presence of a crucial transcription factor
(red: GATA1). Based on a similar figure in [1].
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homo- and hetero-oligomers. Proteomic studies of such
native complexes under gentle conditions using ion mo-
bility mass spectrometry [37] might provide first insights
into the key components involved and into some details
of their interactions, hence providing a basis for further
detailed biophysical analyses.
We have learned a lot about the individual building

blocks in cells and their potential interaction partners in
recent years. Now we need to put the pieces together, to
develop a much better architectural understanding of
the molecular processes in cells. A functional classifica-
tion of loop structures, such as we have suggested here,
might help along the way, although it is clear that nat-
ure’s ingenuity and use of highly versatile molecular
themes that are almost endlessly varied will finally defeat
our brains’ apparent urge to put everything we encoun-
ter into neat little boxes.
An architectural, more holistic view of the highly dy-

namic living cells can, of course, be only obtained by
combining a wide range of methodologies, including dif-
ferent super-resolution microscopy techniques [38-41],
in-cell NMR [42-46], high speed in solution atomic force
microscopy [47] and cryoEM [48-51], to name but a few.
Studying proteins, as much as possible, in their natural
habitat [52] will also substantially contribute to a more life-
like model of cell architectures and cell signaling networks.
In addition, we probably need new ways to identify,

describe and classify the highly dynamic, often disor-
dered regions and arrangements of proteins, for example
along the lines suggested by Peter Tompa [53] and
others [54-56]. Accurate descriptions of loop structures
may not be entirely trivial to obtain, but there are several
algorithms and databases readily available to model
loops in proteins [57-59]. We would like to argue, that
for a full description, biophysical classifications should
be combined with functional descriptions, such as the
one proposed in an earlier section of this manuscript.
These are exciting times for cell biologists, bioche-

mists, biophysicists and molecular biologists, but also
for chemists, physicists and engineers. As more and
more research fields interconnect to answer together
questions that seemed far out of reach just a few years
back, we can expect to soon reach new shores on the
fascinating journey into biological nanospace. The con-
ceptual trinkets and architectural maps we will bring
back from these travels should provide vital clues for
better treatments of diseases, synthetic biology and a
wide range of bioengineering tasks.
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